Experimental and numerical investigations on glass fragments: shear-frame testing and calibration of Mohr–Coulomb plasticity model

Author:

Pauli AlexanderORCID,Kraus Michael A.ORCID,Siebert Geralt

Abstract

AbstractThe numerical treatment of the residual load-bearing behavior of laminated glasses (LG) in the post-fractured state is highly topical. Nevertheless, currently only few numerical approaches for an accurate representation of the experimentally observed behavior are existent. In order to model the characteristics of the load-bearing behavior of glass laminates in the post-fractured state, the behavior of the interlayer, the behavior of the glass fragments as well as the bonding between glass and interlayer need to be characterized correctly. This paper focuses on the modeling of the frictional contacts between the glass fragments itself. In order to allow for the calibration of failure criteria for the fractured glass particles, framed shear tests which are a common experimental technique in geomechanical testing to determine the shear strength of soils, are performed on glass fragments of different thicknesses and levels of thermal pre-stress. The test results are subsequently used to calibrate non-associated Mohr–Coulomb criteria, which are widely applied to the description of failure and frictional sliding of soils, to the experimental data of four distinct kinds of glass fragments. The obtained parameters of the Mohr–Coulomb models are in magnitude similar to the parameters of standard soils such as sand or gravel. The experimental data further show, that the Mohr–Coulomb model in general can be used to approximate the stress failure plane of the glass fragments but lacks for capturing correctly the plastic volumetric strains (dilation) in Finite Element modelling. Numerical investigations by the Finite Element method showed, that it is possible to reproduce experimental data by using Mohr–Coulomb plasticity models and hence the numerical models are validated for further investigations.

Funder

Projekt DEAL

Publisher

Springer Science and Business Media LLC

Subject

Building and Construction,Architecture,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3