Bovine dentin collagen/poly(lactic acid) scaffolds for teeth tissue regeneration

Author:

Navarro-Cerón AuroraORCID,Barceló-Santana Federico HumbertoORCID,Vera-Graziano RicardoORCID,Rivera-Torres FilibertoORCID,Jiménez-Ávila AlbertoORCID,Rosales-Ibáñez RaúlORCID,Navarro-Cerón ElizabethORCID,Castell-Rodríguez Andrés EliuORCID,Maciel-Cerda AlfredoORCID

Abstract

AbstractElectrospun scaffolds with diameter fibers compared to those in the extracellular matrix were produced with poly(lactic acid) (PLA) and non-denatured collagen from bovine dentin (DCol). DCol was obtained through an improved version of the Longin method by acid erosion of the hydroxyapatite of the roots of teeth from a 2-year-old cattle. The dentin collagen was characterized by energy dispersive X-ray spectroscopy (EDS), and carbon, nitrogen, and oxygen were found to be the main elements of the protein. Infrared analysis revealed the typical bands of collagen at about 3300, 1631, 1539, and 1234 cm−1 for amides A, I, II, and III, respectively. Calorimetric and infrared analyses also demonstrated that the collagen was non-denatured. With scanning electron microscopy, it was found that the thinnest fibers with a diameter comparable to that of fibers in the extracellular matrix were obtained when dentin collagen and acetic acid (AAc) were added to the solution of PLA in trifluoroethanol (TFE). The scaffolds with the thinnest diameter had also the highest porosity, and we considered that they could be beneficial in the growth of dentin cell. Human placenta-derived mesenchymal stem cells were seeded onto electrospun scaffolds. After 24, 48 and 96 h of culture, cell proliferation was evaluated by two independent strategies. In both assays, it was found that the pl-MSCs were capable of adhering and proliferating in different scaffolds. It was also observed that cell adhesion and proliferation increased significantly in scaffolds containing collagen, although the addition of AAc slightly decreased this effect on all scaffolds. Graphical abstract

Funder

Consejo Nacional de Ciencia y Tecnología

Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Polymers and Plastics,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3