Effect of various geopolymerization parameters on poor quality Afşin-Elbistan fly ash-based geopolymer concretes with ground granulated blast furnace slag

Author:

Sevinç Ahmet HayrullahORCID,Durgun Muhammed Yasin

Abstract

AbstractThe utilization of Afşin-Elbistan fly ash (FA), which cannot be used in cement and concrete industry in production of geopolymers, has been studied with some preliminary trials. In this study, FA of Afşin-Elbistan thermal power plant, which does not fit any of FA classes according to ASTM C 618, was used as a geopolymer binder raw material. The main motivation of the study is to investigate the partial usability of this type of FA, which is not sufficient on its own and creates a large amount of waste, as a geopolymer raw material. FA was replaced with ground granulated blast furnace slag (GGBFS) by the ratios of 25% and 50% (by weights) in order to develop the properties of geopolymer concrete. Sodium silicate (SS) and sodium hydroxide (SH) (10 and 14 M) were used as activators. Three different activator to binder ratios (0.45, 0.55 and 0.65) and three SS/SH ratios (0.75, 1.0 and 1.5) were chosen. Unit weight, compressive strength, splitting tensile strength, and ultrasonic pulse velocity tests were performed for 28 and 60 days. In order to investigate the microstructure, scanning electron microscopy (SEM) analyses were performed. As a result, GGBFS incorporation enhanced the properties of Afşin-Elbistan FA-based geopolymer concrete. With the increase of GGBFS content, the compressive strength values increased. The highest strengths were obtained from 50% GGBFS groups. The results revealed that Afşin-Elbistan FA (AEFA), which has the highest waste reserve among the thermal power plant fly ashes in Turkey, could be evaluated as partial geopolymer raw material. Graphical abstract

Funder

Kahramanmaras İstiklal University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3