Utilization of WRF 3D Meteorological Data to Calculate Slant Total Delay for InSAR Atmospheric Correction

Author:

Wang XinyiORCID,Zeng Qiming,Jiao Jian

Abstract

AbstractThe atmosphere introduces excess delays into the synthetic aperture radar (SAR) signal trajectory, especially in the troposphere. InSAR atmospheric correction methods include the use of SAR data and external water vapor products. The latter is more effective. However, since the removal of atmospheric effects should use atmospheric delay products in the direction of the line of sight (LOS), it is necessary to convert the zenith total delay to slant delay in the LOS direction. Conventionally, the zenith delay is divided by the cosine of the average incident angles to obtain slant phase delays. But this method could cause large errors because it ignores the atmospheric horizontal gradient change and the small-scale vertical structure. These problems can be solved by using three-dimensional atmospheric data simulated by numerical models, especially in the case of intense weather changes or complex terrain. However, few scholars paid attention to the application into InSAR atmospheric correction, because of the computation complexity and low efficiency. As the requirement for higher accuracy and the introduction of large errors caused by increasing incidence angles, it is significantly imperative to make the utmost of this method. Weather Research Forecast (WRF) model can provide the precipitate water vapor (PWV) and refraction index at different levels in the three dimensions, and then the slant total delay can be obtained for removing the atmospheric effect on the InSAR process. The results demonstrate that using 3D data can obtain more accurate slant total delay and improve the accuracy of surface deformation from InSAR technology.

Funder

Key Technologies Research and Development Program

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3