Using Multi-decadal Satellite Records to Identify Environmental Drivers of Fire Severity Across Vegetation Types

Author:

Rodriguez-Cubillo DarioORCID,Jordan Gregory J.ORCID,Williamson Grant J.ORCID

Abstract

Abstract To date, most studies of fire severity, which is the ecological damage produced by a fire across all vegetation layers in an ecosystem, using remote sensing have focused on wildfires and forests, with less attention given to prescribed burns and treeless vegetation. Our research analyses a multi-decadal satellite record of fire severity in wildfires and prescribed burns, across forested and treeless vegetation, in western Tasmania, a wet region of frequent clouds. We used Landsat satellite images, fire history mapping and environmental predictor variables to understand what drives fire severity. Remotely-sensed fire severity was estimated by the Delta Normalised Burn Ratio (ΔNBR) for 57 wildfires and 70 prescribed burns spanning 25 years. Then, we used Random Forests to identify important predictors of fire severity, followed by generalised additive mixed models to test the statistical association between the predictors and fire severity. In the Random Forests analyses, mean summer precipitation, mean minimum monthly soil moisture and time since previous fire were important predictors in both forested and treeless vegetation, whereas mean annual precipitation was important in forests and temperature seasonality was important in treeless vegetation. Modelled ΔNBR (predicted ΔNBRs from the best-performing generalised additive mixed model) of wildfire forests was higher than modelled ΔNBR of prescribed burns. This study confirms that western Tasmania is a valuable pyrogeographical model for studying fire severity of wet ecosystems under climate change, and provides a framework to better understand the interactions between climate, fire severity and prescribed burning.

Funder

University of Tasmania

Bushfires and Natural Hazards Cooperative Research Centre

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3