Climate modelling of the potential distribution in South Africa of two Zygogramma species (Coleoptera: Chrysomelidae) released for the biological control of invasive weed Tithonia rotundifolia (Asteraceae: Heliantheae)

Author:

Mawela Khethani V.ORCID,Simelane David O.ORCID,Olckers TerenceORCID

Abstract

AbstractTwo Mexican leaf-feeding beetles, Zygogramma piceicollis (Stål) and Zygogramma signatipennis (Stål) (Coleoptera: Chrysomelidae), were released in South Africa for the biological control of the invasive species Tithonia rotundifolia (Mill.) S.E. Blake (Asteraceae: Heliantheae). The aim of this study was to predict the potential of these beetles to establish and spread in South Africa, using MaxEnt climate modelling that incorporated locality data recorded in Mexico between 2008 and 2019 and data from the Global Biodiversity Information Facility. Zygogramma signatipennis displayed a wider distribution than Z. piceicollis in Mexico, with some overlap between the two species. The average receiver operating characteristic curves obtained for Z. piceicollis and Z. signatipennis predicted high mean area under curve values of 0.910 and 0.885, respectively. Jackknife tests revealed that mean annual temperature had the highest gain when used in isolation for Z. piceicollis, compared with minimum precipitation of the driest month for Z. signatipennis. These tests also revealed that the highest and lowest contributing environmental variables for Z. piceicollis and Z. signatipennis were minimum precipitation of the driest month (37.9 and 46.7%) and maximum annual temperature of the warmest month (3.8 and 12.3%), respectively. MaxEnt modelling predicted that at least six of South Africa’s nine provinces provide regions that would support the proliferation of both beetles, with conditions best suited for Z. piceicollis. Despite predictions that both beetles should establish throughout the range of T. rotundifolia in South Africa, their realized establishment has so far been poor. Other factors, besides climate, including release size, site destructions, drought, soil moisture and texture could be constraining establishment.

Funder

Agricultural Research Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3