Abstract
Abstract
Osteoplastic precursors are critical for fracture repair and bone homeostasis maintenance. Cerium oxide nanoparticles (CeO2 NPs) can promote the osteogenic differentiation of mesenchymal stem cells and secrete vascular endothelial growth factors. However, little is known about its role in precursor osteoblasts; therefore, we further investigated the effect and mechanism of CeO2 NPs in precursor osteoblasts. Cell counting kit-8 analysis was utilized to detect the toxicity of CeO2 NPs on MC3T3-E1 mouse osteogenic precursor cells. Then, alizarin red S staining was employed to assess the degree of extracellular matrix mineralization, and quantitative real-time polymerase chain reaction analysis was performed to measure the levels of osteogenesis-related genes. To identify differentially expressed genes, mRNA-sequencing was performed. Subsequently, GO and KEGG analyses were deployed to identify the major downstream pathways, whereas Western blot was used for verification. CeO2 NPs significantly enhanced the ability of MC3T3-E1 precursor osteoblasts to enhance matrix mineralization and increased the expression of osteogenic genes such as runt-related transcription factor 2, collagen Iα1, and osteocalcin. Pathway analysis revealed that CeO2 NPs enhanced the nuclear translocation of β-catenin and activated the Wnt pathway by promoting family with sequence similarity 53 member B/simplet expression, while Western blot analysis indicated the same results. After using a Wnt pathway inhibitor (KYA1797K), the simulative effect of CeO2 NPs was abolished. This study revealed that CeO2 NPs promoted MC3T3-E1 precursor osteoblast differentiation by activating the Wnt pathway.
Funder
Zhejiang Province Traditional Chinese Medicine Scientific Research Fund project
Medical Health Science and Technology Project of Zhejiang Provincial Health Commission
Basic public welfare research plan of Zhejiang Province
Health Technology Project of Zhejiang Province
National Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Biochemistry (medical),Inorganic Chemistry,Clinical Biochemistry,General Medicine,Biochemistry,Endocrinology, Diabetes and Metabolism
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献