Comparison of Serum, Plasma, and Liver Zinc Measurements by AAS, ICP-OES, and ICP-MS in Diverse Laboratory Settings

Author:

Hall Andrew G.ORCID,King Janet C.ORCID,McDonald Christine M.

Abstract

AbstractProgress improving zinc nutrition globally is slowed by limited understanding of population zinc status. This challenge is compounded when small differences in measurement can bias the determination of zinc deficiency rates. Our objective was to evaluate zinc analytical accuracy and precision among different instrument types and sample matrices using a standardized method. Participating laboratories analyzed zinc content of plasma, serum, liver samples, and controls, using a standardized method based on current practice. Instrument calibration and drift were evaluated using a zinc standard. Accuracy was evaluated by percent error vs. reference, and precision by coefficient of variation (CV). Seven laboratories in 4 countries running 9 instruments completed the exercise: 4 atomic absorbance spectrometers (AAS), 1 inductively coupled plasma optical emission spectrometer (ICP-OES), and 4 ICP mass spectrometers (ICP-MS). Calibration differed between individual instruments up to 18.9% (p < 0.001). Geometric mean (95% CI) percent error was 3.5% (2.3%, 5.2%) and CV was 2.1% (1.7%, 2.5%) overall. There were no significant differences in percent error or CV among instrument types (p = 0.91, p = 0.15, respectively). Among sample matrices, serum and plasma zinc measures had the highest CV: 4.8% (3.0%, 7.7%) and 3.9% (2.9%, 5.4%), respectively (p < 0.05). When using standardized materials and methods, similar zinc concentration values, accuracy, and precision were achieved using AAS, ICP-OES, or ICP-MS. However, method development is needed for improvement in serum and plasma zinc measurement precision. Differences in calibration among instruments demonstrate a need for harmonization among laboratories.

Funder

Bill and Melinda Gates Foundation

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry (medical),Inorganic Chemistry,Clinical Biochemistry,General Medicine,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3