Chitosan-Encapsulated Nano-selenium Targeting TCF7L2, PPARγ, and CAPN10 Genes in Diabetic Rats

Author:

Abozaid Omayma A. R.ORCID,El-Sonbaty Sawsan M.ORCID,Hamam Neama M. A.,Farrag Moustafa A.ORCID,Kodous Ahmad S.ORCID

Abstract

AbstractThis study investigates the antidiabetic and antioxidant potential of chitosan-encapsulated selenium nanoparticles in streptozotocin-induced diabetic model. Glibenclamide was used as a reference antidiabetic drug. Forty-eight adult male Wistar rats were used along the study and divided equally into 6 groups of (I) normal control, (II) chitosan-encapsulated selenium nanoparticles (CTS-SeNPs), (III) glibenclamide, (IV) streptozotocin (STZ), (V) STZ + CTS-SeNPs, and (VI) STZ + Glib. The animals were sacrificed on the 35th day of the experiment. Serum glucose, insulin, IGF-1, ALT, AST, CK-MB, oxidative stress, lipid profile, and inflammatory parameters were subsequently assessed. Also, the expression level of TCF7L2, CAPN10, and PPAR-γ genes were evaluated using qPCR. In addition, histopathological studies on pancreatic tissue were carried out. The results revealed that STZ induced both diabetes and oxidative stress in normal rats, manifested by the significant changes in the studied parameters and in the physical structure of pancreatic tissue. Oral administration of CTS-SeNPs or Glib results in a significant amelioration of the levels of serum fasting blood glucose, insulin, IGF-1, AST, ATL, and CK-MB as compared with STZ-induced diabetic rats. CTS-SeNPs and Glib diminished the level of lipid peroxidation, increased total antioxidant capacity level, as well as possessed strong inhibition against serum α-amylase and α-glucosidase activities. Diabetic animals received CTS-SeNPs, or Glib demonstrated a significant (p < 0.05) decrease in the expression level of TCF7L2 and CAPN10 genes with a significant increase in the expression level of PPAR-γ gene, compared to STZ group. The above findings clarify the promising antidiabetic and antioxidant effect of CTS-SeNPs, recommending its inclusion in the currently used protocols for the treatment of diabetes and in the prevention of its related complications. Graphical abstract

Funder

Egyptian Atomic Energy Authority

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry (medical),Inorganic Chemistry,Clinical Biochemistry,General Medicine,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3