Quercetin and l-Arginine Ameliorated the Deleterious Effects of Copper Oxide Nanoparticles on the Liver of Mice Through Anti-inflammatory and Anti-apoptotic Pathways

Author:

Haroun Amina M.,El-Sayed Wael M.ORCID,Hassan Rasha E.ORCID

Abstract

AbstractThe widespread use and applications of copper oxide nanoparticles (CuO NPs) in daily life make human exposure to these particles inevitable. This study was carried out to investigate the deteriorations in hepatic and serum biochemical parameters induced by CuO NPs in adult male mice and the potential ameliorative effect of l-arginine and quercetin, either alone or in combination. Seventy adult male mice were equally allocated into seven groups: untreated group, l-arginine, quercetin, CuO NPs, arginine + CuO NPs, quercetin + CuO NPs, and quercetin + arginine + CuO NPs. Treating mice with CuO NPs resulted in bioaccumulation of copper in the liver and consequent liver injury as typified by elevation of serum ALT activity, reduction in the synthetic ability of the liver indicated by a decrease in the hepatic arginase activity, and serum total protein content. This copper accumulation increased oxidative stress, lipid peroxidation, inflammation, and apoptosis as manifested by elevation in malondialdehyde, nitric oxide, tumor necrosis factor-α, the expression level of caspase-3 and bax quantified by qPCR, and the activity of caspase-3, in addition to the reduction of superoxide dismutase activity. It also resulted in severe DNA fragmentation as assessed by Comet assay and significant pathological changes in the liver architecture. The study proved the efficiency of quercetin and l-arginine in mitigating CuO NPs-induced sub-chronic liver toxicity due to their antioxidant, anti-inflammatory, and anti-apoptotic properties; ability to inhibit DNA damage; and the potential as good metal chelators. The results of histopathological analysis confirmed the biochemical and molecular studies.

Funder

Ain Shams University

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry (medical),Inorganic Chemistry,Clinical Biochemistry,General Medicine,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3