Boric Acid and Borax Protect Human Lymphocytes from Oxidative Stress and Genotoxicity Induced by 3-Monochloropropane-1,2-diol

Author:

Turkez Hasan,Tozlu Ozlem Ozdemir,Arslan Mehmet Enes,Baba Cem,Saracoglu Muhammed Melik,Yıldız Edanur,Tatar Abdulgani,Mardinoglu Adil

Abstract

Abstract3-chloro-1,2-propanediol (3-MCPD) is a member of the group of pollutants known as chloropropanols and is considered a genotoxic carcinogen. Due to the occurrence of 3-MCPD, which cannot be avoided in multiplexed food processes, it is necessary to explore novel agents to reduce or prevent the toxicity of 3-MCPD. Many recent studies on boron compounds reveal their superior biological roles such as antioxidant, anticancer, and antigenotoxic properties. In the current investigation, we have evaluated in vitro cytotoxic, oxidative, and genotoxic damage potential of 3-MCPD on human whole blood cultures and the alleviating effect of boric acid (BA) and borax (BX) for 72 h. In our in vitro experiments, we have treated blood cells with BA and BX (2.5, 5, and 10 mg/L) and 3-MCPD (at IC50 of 11.12 mg/l) for 72 h to determine the cytotoxic damage potential by using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and lactate dehydrogenase (LDH) release assays. Oxidative damage was assessed using total antioxidant capacity (TAC) and malondialdehyde (MDA) levels. Genotoxicity evaluations were performed using chromosome aberrations (CAs) and 8-hydroxy deoxyguanosine (8-OHdG) assays. The result of our experiments showed that the 3-MCPD compound induced cytotoxicity, oxidative stress, and genotoxicity in a clear concentration-dependent manner. BA and BX reduced cytotoxicity, oxidative stress, and genotoxicity induced by 3-MCPD. In conclusion, BA and BX are safe and non-genotoxic under the in vitro conditions and can alleviate cytotoxic, oxidative, and genetic damage induced by 3-MCPD in the human blood cells. Our findings suggest that dietary boron supplements may offer a novel strategy for mitigating hematotoxicity induced by xenobiotics, including 3-MCPD.

Funder

Erzurum Technical University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3