Abstract
AbstractStereotactic body radiation therapy (SBRT) has been increasingly used for the ablation of liver tumours. CyberKnife and proton beam therapy (PBT) are two advanced treatment technologies suitable to deliver SBRT with high dose conformity and steep dose gradients. However, there is very limited data comparing the dosimetric characteristics of CyberKnife to PBT for liver SBRT. PBT and CyberKnife plans were retrospectively generated using 4DCT datasets of ten patients who were previously treated for hepatocellular carcinoma (HCC, N = 5) and liver metastasis (N = 5). Dose volume histogram data was assessed and compared against selected criteria; given a dose prescription of 54 Gy in 3 fractions for liver metastases and 45 Gy in 3 fractions for HCC, with previously published consensus-based normal tissue dose constraints. Comparison of evaluation parameters showed a statistically significant difference for target volume coverage and liver, lungs and spinal cord (p < 0.05) dose, while chest wall and skin did not indicate a significant difference between the two modalities. A number of optimal normal tissue constraints was violated by both the CyberKnife and proton plans for the same patients due to proximity of tumour to chest wall. PBT resulted in greater organ sparing, the extent of which was mainly dependent on tumour location. Tumours located on the liver periphery experienced the largest increase in organ sparing. Organ sparing for CyberKnife was comparable with PBT for small target volumes.
Funder
University of Western Australia
Publisher
Springer Science and Business Media LLC