Radiomics analysis of bone marrow biopsy locations in [18F]FDG PET/CT images for measurable residual disease assessment in multiple myeloma

Author:

Milara EvaORCID,Alonso RafaelORCID,Masseing Lena,Seiffert Alexander P.ORCID,Gómez-Grande AdolfoORCID,Gómez Enrique J.ORCID,Martínez-López JoaquínORCID,Sánchez-González PatriciaORCID

Abstract

AbstractThe combination of visual assessment of whole body [18F]FDG PET images and evaluation of bone marrow samples by Multiparameter Flow Cytometry (MFC) or Next-Generation Sequencing (NGS) is currently the most common clinical practice for the detection of Measurable Residual Disease (MRD) in Multiple Myeloma (MM) patients. In this study, radiomic features extracted from the bone marrow biopsy locations are analyzed and compared to those extracted from the whole bone marrow in order to study the representativeness of these biopsy locations in the image-based MRD assessment. Whole body [18F]FDG PET of 39 patients with newly diagnosed MM were included in the database, and visually evaluated by experts in nuclear medicine. A methodology for the segmentation of biopsy sites from PET images, including sternum and posterior iliac crest, and their subsequent quantification is proposed. First, starting from the bone marrow segmentation, a segmentation of the biopsy sites is performed. Then, segmentations are quantified extracting SUV metrics and radiomic features from the [18F]FDG PET images and are evaluated by Mann–Whitney U-tests as valuable features differentiating PET+/PET− and MFC+ /MFC− groups. Moreover, correlation between whole bone marrow and biopsy sites is studied by Spearman ρ rank. Classification performance of the radiomics features is evaluated applying seven machine learning algorithms. Statistical analyses reveal that some images features are significant in PET+/PET− differentiation, such as SUVmax, Gray Level Non-Uniformity or Entropy, especially with a balanced database where 16 of the features show a p value < 0.001. Correlation analyses between whole bone marrow and biopsy sites results in significant and acceptable coefficients, with 11 of the variables reaching a correlation coefficient greater than 0.7, with a maximum of 0.853. Machine learning algorithms demonstrate high performances in PET+/PET− classification reaching a maximum AUC of 0.974, but not for MFC+/MFC− classification. The results demonstrate the representativeness of sample sites as well as the effectiveness of extracted features (SUV metrics and radiomic features) from the [18F]FDG PET images in MRD assessment in MM patients.

Funder

Universidad Politécnica de Madrid

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Biomedical Engineering,Biophysics,Radiological and Ultrasound Technology,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3