Abstract
AbstractIn vivo dosimetry (IVD) in a commonly used liver cancer treatment of selective internal radiation therapy (SIRT) has been done based on the post-treatment image-based dosimetry approach. Real-time IVD is necessary to verify the dose delivery and detect errors during the treatment for better patient outcomes. This study aims to develop a fibre optic dosimeter (FOD) for in vivo real-time dose rate measurement during internal beta radiation therapy, e.g., SIRT. A ruby fibre optic probe was prepared and studied the radioluminescence (RL) characteristics, including its major challenge of stem effect arising from Cherenkov radiation and luminescence from the irradiated fibre. The stem signal was suppressed adequately using the stem removal technique of optical filtering, and only 2.3 ± 1.1% stem signal was contributed to the measured RL signal. A linear dose rate response was observed during the exposure of the ruby probe to varying dose rates using a 6 MeV electron beam and a positron-emitting radionuclide fluorine-18. The ruby exhibited a temporally non-constant RL signal, which increased the RL signal by 0.84 ± 0.29 counts/sec2 during the irradiation of the maximum dose rate used in this study of 9 Gy/min for 2 min. The ability of ruby FOD to measure the absolute dose rate with sufficient stem effect suppression and the linear RL dose rate response indicates its suitability for real-time IVD during internal beta radiation therapy. Future work will investigate the time-dependent RL characteristic of ruby and validate post-treatment image-based dosimetry using ruby-based FOD.
Funder
University of South Australia
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Biomedical Engineering,Biophysics,Radiological and Ultrasound Technology,Biotechnology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献