Simulation of passive exotendon assistive device for agricultural harvesting task

Author:

Chan Yon SinORCID,Teo Yu Xuan,Gouwanda Darwin,Nurzaman Surya Girinatha,Gopalai Alpha Agape

Abstract

AbstractThis study proposes and investigates the feasibility of the passive assistive device to assist agricultural harvesting task and reduce the Musculoskeletal Disorder (MSD) risk of harvesters using computational musculoskeletal modelling and simulations. Several passive assistive devices comprised of elastic exotendon, which acts in parallel with different back muscles (rectus abdominis, longissimus, and iliocostalis), were designed and modelled. These passive assistive devices were integrated individually into the musculoskeletal model to provide passive support for the harvesting task. The muscle activation, muscle force, and joint moment were computed with biomechanical simulations for unassisted and assisted motions. The simulation results demonstrated that passive assistive devices reduced muscle activation, muscle force, and joint moment, particularly when the devices were attached to the iliocostalis and rectus abdominis. It was also discovered that assisting the longissimus muscle can alleviate the workload by distributing a portion of it to the rectus abdominis. The findings in this study support the feasibility of adopting passive assistive devices to reduce the MSD risk of the harvesters during agricultural harvesting. These findings can provide valuable insights to the engineers and designers of physical assistive devices on which muscle(s) to assist during agricultural harvesting.

Funder

Advanced Engineering Platform, Monash University Malaysia

Monash Industry Palm Oil Research Platform, Monash University Malaysia

Monash University

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Biomedical Engineering,Biophysics,Radiological and Ultrasound Technology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3