Author:
Zheng Zuofeng,Yang Jiafei,Zhang Dongpo,Ma Jun,Yin Hongxia,Liu Yawen,Wang Zhenchang
Abstract
AbstractMulti-Dynamic Multi-Echo (MDME) Sequence is a new method which can acquire various contrast-weighted images using quantitative relaxometric parameters measured from multicontrast images. The purpose of our study was to investigate the effect of scan parameters of MDME Sequence on measured T1, T2 values of phantoms at 3.0 T MRI scanner. Gray matter, white matter and cerebrospinal fluid simulation phantoms with different relaxation times (named GM, WM, CSF, respectively) were used in our study. All the phantoms were scanned 9 times on different days using MDME sequence with variations of echo train length, matrix, and acceleration factor. The T1, T2 measurements were acquired after each acquisition. The repeatability was characterized as the intragroup coefficient of variation (CV) of measured values over 9 times, and the discrepancies of measurements across different groups were characterized as intergroup CVs. The highest intragroup CVs of T1-GM, T2-GM, T1-WM, T2-WM, T1-CSF, T2-SCF were 1.36%, 1.75%, 0.74%, 1.41%, 1.70%, 7.79%, respectively. The highest intergroup CVs of T1-GM, T2-GM, T1-WM, T2-WM, T1-CSF, T2-SCF were 0.54%, 1.86%, 1.70%, 0.94%, 1.00%, 2.17%, respectively. Quantitative T1, T2 measurements of gray matter, white matter and cerebrospinal fluid simulation phantoms derived from the MDME sequence were not obviously affected by variations of scanning parameters, such as echo train length, matrix, and acceleration factor on 3T scanner.
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Biomedical Engineering,Biophysics,Radiological and Ultrasound Technology,Biotechnology