Hyperspectral imaging with machine learning for in vivo skin carcinoma margin assessment: a preliminary study

Author:

Parasca Sorin ViorelORCID,Calin Mihaela AntoninaORCID,Manea DragosORCID,Radvan RoxanaORCID

Abstract

AbstractSurgical excision is the most effective treatment of skin carcinomas (basal cell carcinoma or squamous cell carcinoma). Preoperative assessment of tumoral margins plays a decisive role for a successful result. The aim of this work was to evaluate the possibility that hyperspectral imaging could become a valuable tool in solving this problem. Hyperspectral images of 11 histologically diagnosed carcinomas (six basal cell carcinomas and five squamous cell carcinomas) were acquired prior clinical evaluation and surgical excision. The hyperspectral data were then analyzed using a newly developed method for delineating skin cancer tumor margins. This proposed method is based on a segmentation process of the hyperspectral images into regions with similar spectral and spatial features, followed by a machine learning-based data classification process resulting in the generation of classification maps illustrating tumor margins. The Spectral Angle Mapper classifier was used in the data classification process using approximately 37% of the segments as the training sample, the rest being used for testing. The receiver operating characteristic was used as the method for evaluating the performance of the proposed method and the area under the curve as a metric. The results revealed that the performance of the method was very good, with median AUC values of 0.8014 for SCCs, 0.8924 for BCCs, and 0.8930 for normal skin. With AUC values above 0.89 for all types of tissue, the method was considered to have performed very well. In conclusion, hyperspectral imaging can become an objective aid in the preoperative evaluation of carcinoma margins.

Funder

Ministerul Cercetării, Inovării şi Digitalizării

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3