Deep limits of residual neural networks

Author:

Thorpe Matthew,van Gennip Yves

Abstract

AbstractNeural networks have been very successful in many applications; we often, however, lack a theoretical understanding of what the neural networks are actually learning. This problem emerges when trying to generalise to new data sets. The contribution of this paper is to show that, for the residual neural network model, the deep layer limit coincides with a parameter estimation problem for a nonlinear ordinary differential equation. In particular, whilst it is known that the residual neural network model is a discretisation of an ordinary differential equation, we show convergence in a variational sense. This implies that optimal parameters converge in the deep layer limit. This is a stronger statement than saying for a fixed parameter the residual neural network model converges (the latter does not in general imply the former). Our variational analysis provides a discrete-to-continuum $$\Gamma $$ Γ -convergence result for the objective function of the residual neural network training step to a variational problem constrained by a system of ordinary differential equations; this rigorously connects the discrete setting to a continuum problem.

Funder

H2020 European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Mathematics (miscellaneous),Theoretical Computer Science

Reference99 articles.

1. Adams, R. A., Fournier, J. J. F.: Sobolev spaces, volume 140. Elsevier, (2003)

2. Anthony, M.: Discrete mathematics of neural networks: selected topics, volume 8. SIAM, (2001)

3. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

4. Bo, L., Capponi, A., Liao, H.: Deep residual learning via large sample mean-field optimization. preprint arXiv:1906.08894v3, (2020)

5. Braides, A.: $$\Gamma $$-Convergence for Beginners. Oxford University Press, (2002)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3