Closed orientable surfaces and fold Gauss maps

Author:

Mendes de Jesus C.,Romero Pantaleón D.,Sanabria-Codesal E.ORCID

Abstract

AbstractThis paper describes how the elliptic and hyperbolic regions of a surface are related to stable Gauss maps on closed orientable surfaces immersed in three-dimensional space. We will show that for certain connected, closed, orientable surfaces containing a finite number of embedded circles that delineate two distinct types of regions, if all regions of one type are homeomorphic to a cylinder, then there exists an immersion $$f: M \rightarrow \mathbb {R}^3$$ f : M R 3 for which the Gauss map is a fold Gauss map.

Funder

INDI23/17

Fapemig / INCTMat

Universitat Politècnica de València

Publisher

Springer Science and Business Media LLC

Reference9 articles.

1. Arnol’d, V.I., Gusein-Zade, S.M., Varchenko, A.N.: Singularities of Differentiable Maps. Vol. I. The Classification of Critical Points, Caustics and Wave Fronts, Translated from the Russian by Ian Porteous and Mark Reynolds. Monographs in Mathematics, vol. 82 (1985)

2. Banchoff, T., Gaffney, T., McCrory, C.: Cusps of Gauss Mappings. Pitman Books Limited, London (1982). Web version with D. Dreibelbis www.math.brown.edu/~dan/cgm/index.html

3. Bruce, J.W., Giblin, P.J., Tari, F.: Families of surfaces: height functions, Gauss maps and duals. In: Marar, W.L. (Ed.) Real and Complex Singularities, Pitman Research Notes in Mathematics, vol. 333, pp. 148–178 (1995)

4. Bleecker, D., Wilson, L.: Stability of Gauss maps. Ill. J. Math. 22(2), 279–289 (1978)

5. Camacho, C., Lins Neto, A.: Geometric Theory of Foliations. Birkhäuser, Boston (1985)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3