Modified transmission eigenvalues for inverse scattering in a fluid–solid interaction problem

Author:

Monk PeterORCID,Selgas VirginiaORCID

Abstract

AbstractTarget signatures are discrete quantities computed from measured scattering data that could potentially be used to classify scatterers or give information about possible defects in the scatterer compared to an ideal object. Here, we study a class of modified interior transmission eigenvalues that are intended to provide target signatures for an inverse fluid–solid interaction problem. The modification is based on an auxiliary problem parametrized by an artificial diffusivity constant. This constant may be chosen strictly positive, or strictly negative. For both choices, we characterize the modified interior transmission eigenvalues by means of a suitable operator so that we can determine their location in the complex plane. Moreover, for the negative sign choice, we also show the existence and discreteness of these eigenvalues. Finally, no matter the choice of the sign, we analyze the approximation of the eigenvalues from far field measurements of the scattered fluid pressure and provide numerical results which show that, even with noisy data, some of the eigenvalues can be determined from far field data.

Funder

Air Force Office of Scientific Research

Ministerio de Economía, Industria y Competitividad, Gobierno de España

Fundación Banco Santander

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Mathematics (miscellaneous),Theoretical Computer Science

Reference30 articles.

1. Agranovich, M.S., Amosov, B.A., Levitin, M.: Spectral problems for the Lamé system with spectral parameter in boundary conditions on smooth or nonsmooth boundary. Russ. J. Math. Phys. 6, 247–281 (1999)

2. Audibert, L., Cakoni, F., Haddar, H.: New sets of eigenvalues in inverse scattering for inhomogeneous media and their determination from scattering data. Inverse Probl. 30, 125001 (2015)

3. Cakoni, F., Colton, D.: Qualitative Methods in Inverse Scattering Theory. Springer, New York (2006)

4. Cakoni, F., Colton, D., Meng, S., Monk, P.: Stekloff eigenvalues in inverse scattering. SIAM J. Appl. Math. 76(4), 1737–1763 (2016)

5. Camaño, J., Lackner, C., Monk, P.: Electromagnetic Stekloff eigenvalues in inverse Scattering. SIAM J. Math. Anal. 49, 4376–4401 (2017)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3