1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., & Zheng, X. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems.
https://www.tensorflow.org/
. Accessed 10 July 2017.
2. Ahmad, T., Bebis, G., Regentova, E. E., & Nefian, A. (2013). A machine learning approach to horizon line detection using local features (pp. 181–193). Berlin: Springer.
https://doi.org/10.1007/978-3-642-41914-0_19
.
3. Alpatov, B. A., Babayan, P. V., & Shubin, N. Y. (2015). Weighted Radon transform for line detection in noisy images. Journal of Electronic Imaging, 24, 023023.
https://doi.org/10.1117/1.JEI.24.2.023023
.
4. Bhattacharyya, A. (1946). On a measure of divergence between two multinomial populations. Sankhy: The Indian Journal of Statistics (1933–1960), 7(4), 401–406.
5. Bloisi, D., Iocchi, L., Fiorini, M., & Graziano, G. (2011). Automatic maritime surveillance with visual target detection. In Proceedings of the international defense and homeland security simulation workshop (DHSS) (pp. 141–145), Rome, Italy.
http://www.dis.uniroma1.it/~bloisi/papers/bloisi-maritime-surveillance.pdf
.