Author:
Liu Mingming,Liu Bing,Zhang Chen,Sun Wei
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Artificial Intelligence,Computer Science Applications,Hardware and Architecture,Information Systems,Signal Processing,Software
Reference31 articles.
1. Ashish, S., Patel, V. M., & Rama, C. (2014). Multiple kernel learning for sparse representation-based classification. IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society, 23(7), 3013–3024.
2. Baghshah, M. S., & Shouraki, S. B. (2010). Kernel-based metric learning for semi-supervised clustering. Neurocomputing, 73(s 7—-9), 1352–1361.
3. Baghshah, M. S., & Shouraki, S. B. (2011). Learning low-rank kernel matrices for constrained clustering. Neurocomputing, 74(12–13), 2201–2211.
4. Belkin, M., Niyogi, P., & Sindhwani, V. (2006). Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7(1), 2399–2434.
5. Bucak, S. S., & Jain, A. K. (2014). Multiple kernel learning for visual object recognition: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(2), 1–1.