Synthetic OCT data in challenging conditions: three-dimensional OCT and presence of abnormalities

Author:

Danesh Hajar,Maghooli Keivan,Dehghani Alireza,Kafieh RaheleORCID

Abstract

AbstractNowadays, retinal optical coherence tomography (OCT) plays an important role in ophthalmology and automatic analysis of the OCT is of real importance: image denoising facilitates a better diagnosis and image segmentation and classification are undeniably critical in treatment evaluation. Synthetic OCT was recently considered to provide a benchmark for quantitative comparison of automatic algorithms and to be utilized in the training stage of novel solutions based on deep learning. Due to complicated data structure in retinal OCTs, a limited number of delineated OCT datasets are already available in presence of abnormalities; furthermore, the intrinsic three-dimensional (3D) structure of OCT is ignored in many public 2D datasets. We propose a new synthetic method, applicable to 3D data and feasible in presence of abnormalities like diabetic macular edema (DME). In this method, a limited number of OCT data is used during the training step and the Active Shape Model is used to produce synthetic OCTs plus delineation of retinal boundaries and location of abnormalities. Statistical comparison of thickness maps showed that synthetic dataset can be used as a statistically acceptable representative of the original dataset (p > 0.05). Visual inspection of the synthesized vessels was also promising. Regarding the texture features of the synthesized datasets, Q-Q plots were used, and even in cases that the points have slightly digressed from the straight line, the p-values of the Kolmogorov–Smirnov test rejected the null hypothesis and showed the same distribution in texture features of the real and the synthetic data. The proposed algorithm provides a unique benchmark for comparison of OCT enhancement methods and a tailored augmentation method to overcome the limited number of OCTs in deep learning algorithms. Graphical abstract

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Biomedical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3