Multi-class motor imagery EEG classification using collaborative representation-based semi-supervised extreme learning machine
Author:
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Biomedical Engineering
Link
https://link.springer.com/content/pdf/10.1007/s11517-020-02227-4.pdf
Reference37 articles.
1. Ang KK, Guan C et al (2017) EEG-based strategies to detect motor imagery for control and rehabilitation. IEEE Tran Neural Syst Rehabil Eng 25(4):392–401
2. Pfurtscheller G, Neuper C et al (2001) Motor imagery and direct brain-computer communication. Proc IEEE 89(7):1123–1134
3. Lotte F, Bougrain L, Cichocki A, Clerc M, Congedo M, Rakotomamonjy A, Yger F (2018) A review of classification algorithms for eeg-based brain-computer interfaces: a 10-year update. J Neural Eng 15:031005
4. Ma YL, She QS et al (2016) Classification of motor imagery eeg signals with support vector machines and particle swarm optimization. Comput Math Methods Med 4941235
5. Li RH et al (2017) Enhancing performance of a hybrid EEG-fNIRS system using channel selection and early temporal features. Front Hum Neurosci 11:462
Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Enhancing complex upper-limb motor imagery discrimination through an incremental training strategy;Biomedical Signal Processing and Control;2025-01
2. EEGNet-based multi-source domain filter for BCI transfer learning;Medical & Biological Engineering & Computing;2023-11-20
3. On the Comparison of Multilayer Perceptron and Extreme Learning Machine for Pedaling Recognition Using EEG;Applications of Computational Intelligence;2023-11-18
4. Detection of Pedaling Tasks through EEG Using Extreme Learning Machine for Lower-Limb Rehabilitation Brain-Computer Interfaces;2023 IEEE Colombian Conference on Applications of Computational Intelligence (ColCACI);2023-07-26
5. Brain-computer interfaces in safety and security fields: Risks and applications;Safety Science;2023-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3