Realistic C-arm to pCT registration for vertebral localization in spine surgery

Author:

Naik Roshan Ramakrishna,Anitha H ,Bhat Shyamasunder NORCID,Ampar Nishanth,Kundangar Raghuraj

Abstract

Abstract Spine surgeries are vulnerable to wrong-level surgeries and postoperative complications because of their complex structure. Unavailability of the 3D intraoperative imaging device, low-contrast intraoperative X-ray images, variable clinical and patient conditions, manual analyses, lack of skilled technicians, and human errors increase the chances of wrong-site or wrong-level surgeries. State of the art work refers 3D-2D image registration systems and other medical image processing techniques to address the complications associated with spine surgeries. Intensity-based 3D-2D image registration systems had been widely practiced across various clinical applications. However, these frameworks are limited to specific clinical conditions such as anatomy, dimension of image correspondence, and imaging modalities. Moreover, there are certain prerequisites for these frameworks to function in clinical application, such as dataset requirement, speed of computation, requirement of high-end system configuration, limited capture range, and multiple local maxima. A simple and effective registration framework was designed with a study objective of vertebral level identification and its pose estimation from intraoperative fluoroscopic images by combining intensity-based and iterative control point (ICP)–based 3D-2D registration. A hierarchical multi-stage registration framework was designed that comprises coarse and finer registration. The coarse registration was performed in two stages, i.e., intensity similarity-based spatial localization and source-to-detector localization based on the intervertebral distance correspondence between vertebral centroids in projected and intraoperative X-ray images. Finally, to speed up target localization in the intraoperative application, based on 3D-2D vertebral centroid correspondence, a rigid ICP-based finer registration was performed. The mean projection distance error (mPDE) measurement and visual similarity between projection image at finer registration point and intraoperative X-ray image and surgeons’ feedback were held accountable for the quality assurance of the designed registration framework. The average mPDE after peak signal to noise ratio (PSNR)–based coarse registration was 20.41mm. After the coarse registration in spatial region and source to detector direction, the average mPDE reduced to 12.18mm. On finer ICP-based registration, the mean mPDE was finally reduced to 0.36 mm. The approximate mean time required for the coarse registration, finer registration, and DRR image generation at the final registration point were 10 s, 15 s, and 1.5 min, respectively. The designed registration framework can act as a supporting tool for vertebral level localization and its pose estimation in an intraoperative environment. The framework was designed with the future perspective of intraoperative target localization and its pose estimation irrespective of the target anatomy. Graphical abstract

Funder

Science and Engineering Research Board

Manipal Academy of Higher Education, Manipal

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3