A novel approach for SEMG signal classification with adaptive local binary patterns
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Biomedical Engineering
Link
http://link.springer.com/content/pdf/10.1007/s11517-015-1443-z.pdf
Reference39 articles.
1. Ahonen T, Hadid A, Pietikainen M (2006) Face description with local binary patterns: application to face recognition. IEEE Trans Pattern Anal Mach Intell 28(12):2037–2041. doi: 10.1109/TPAMI.2006.244
2. Al-Assaf Y (2006) Surface myoelectric signal analysis: dynamic approaches for change detection and classification. IEEE Trans Biomed Eng 53(11):2248–2256. doi: 10.1109/TBME.2006.883628
3. Armas WD, Mamun KA, Chau T (2014) Vocal frequency estimation and voicing state prediction with surface EMG pattern recognition. Speech Commun 63–64:15–26. doi: 10.1016/j.specom.2014.04.004
4. Chatlani N, Soraghan JJ (2010) Local binary patterns for 1-D signal processing. In: 18th European signal processing conference (EUSIPCO-2010), pp 95–99
5. Dipietro L, Sabatini AM, Dario P (2003) Artificial neural network model of the mapping between electromyographic activation and trajectory patterns in free-arm movements. Med Biol Eng Comput 41(2):124–132. doi: 10.1007/BF02344879
Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deep ensemble learning approach for lower limb movement recognition from multichannel sEMG signals;Neural Computing and Applications;2024-02-17
2. Multibit Local Neighborhood Difference Pattern Optimization for Seizure Detection of West Syndrome EEG Signals;IEEE Sensors Journal;2023-10-01
3. Hybrid Deep Learning Approaches for sEMG Signal-Based Lower Limb Activity Recognition;Mathematical Problems in Engineering;2022-11-26
4. EEG-based classification of normal and seizure types using relaxed local neighbour difference pattern and artificial neural network;Knowledge-Based Systems;2022-08
5. sEMG-based deep learning framework for the automatic detection of knee abnormality;Signal, Image and Video Processing;2022-07-24
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3