Direct comparison of supervised and semi-supervised retraining approaches for co-adaptive BCIs

Author:

Schwarz Andreas,Brandstetter Julia,Pereira Joana,Müller-Putz Gernot R.ORCID

Abstract

Abstract For Brain-Computer interfaces (BCIs), system calibration is a lengthy but necessary process for successful operation. Co-adaptive BCIs aim to shorten training and imply positive motivation to users by presenting feedback already at early stages: After just 5 min of gathering calibration data, the systems are able to provide feedback and engage users in a mutual learning process. In this work, we investigate whether the retraining stage of co-adaptive BCIs can be adapted to a semi-supervised concept, where only a small amount of labeled data is available and all additional data needs to be labeled by the BCI itself. The aim of the current work was to evaluate whether a semi-supervised co-adaptive BCI could successfully compete with a supervised co-adaptive BCI model. In a supporting two-class (190 trials per condition) BCI study based on motor imagery tasks, we evaluated both approaches in two separate groups of 10 participants online, while we simulated the other approach in each group offline. Our results indicate that despite the lack of true labeled data, the semi-supervised driven BCI did not perform significantly worse (p > 0.05) than the supervised counterpart. We believe that these findings contribute to developing BCIs for long-term use, where continuous adaptation becomes imperative for maintaining meaningful BCI performance.

Funder

Horizon 2020 Framework Programme

European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3