Deep learning-based system for automatic prediction of triple-negative breast cancer from ultrasound images

Author:

Boulenger Alexandre,Luo Yanwen,Zhang Chenhui,Zhao Chenyang,Gao Yuanjing,Xiao Mengsu,Zhu Qingli,Tang Jie

Abstract

Abstract To develop a deep-learning system for the automatic identification of triple-negative breast cancer (TNBC) solely from ultrasound images. A total of 145 patients and 831 images were retrospectively enrolled at Peking Union College Hospital from April 2018 to March 2019. Ultrasound images and clinical information were collected accordingly. Molecular subtypes were determined from immunohistochemical (IHC) results. A CNN with VGG-based architecture was then used to predict TNBC. The model’s performance was evaluated using randomized k-fold stratified cross-validation. A t-SNE analysis and saliency maps were used for model visualization. TNBC was identified in 16 of 145 (11.03%) patients. One hundred fifteen (80%) patients, 15 (10%) patients, and 15 (10%) patients formed the train, validation, and test set respectively. The deep learning system exhibits good efficacy, with an AUC of 0.86 (95% CI: 0.64, 0.95), an accuracy of 85%, a sensitivity of 86%, a specificity of 86%, and an F1-score of 0.74. In addition, the internal representation features learned by the model showed clear differentiation across molecular subtype groups. Such a deep learning system can automatically predict triple-negative breast cancer preoperatively and accurately. It may help to get to more precise and comprehensive management. Graphical Abstract

Funder

the CAMS Innovation Fund for Medical Sciences

National Science Fund for Distinguished Young Scholars

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3