Artifacts classification and apnea events detection in neck photoplethysmography signals

Author:

García-López IreneORCID,Pramono Renard Xaviero AdhiORCID,Rodriguez-Villegas EstherORCID

Abstract

AbstractThe novel pulse oximetry measurement site of the neck is a promising location for multi-modal physiological monitoring. Specifically, in the context of respiratory monitoring, in which it is important to have direct information about airflow. The neck makes this possible, in contrast to common photoplethysmography (PPG) sensing sites. However, this PPG signal is susceptible to artifacts that critically impair the signal quality. To fully exploit neck PPG for reliable physiological parameters extraction and apneas monitoring, this paper aims to develop two classification algorithms for artifacts and apnea detection. Features from the time, correlogram, and frequency domains were extracted. Two SVM classifiers with RBF kernels were trained for different window (W) lengths and thresholds (Thd) of corruption. For artifacts classification, the maximum performance was attained for the parameters combination of [W = 6s-Thd= 20%], with an average accuracy= 85.84%(ACC), sensitivity= 85.43%(SE) and specificity= 86.26%(SP). For apnea detection, the model [W = 10s-Thd= 50%] maximized all the performance metrics significantly (ACC= 88.25%, SE= 89.03%, SP= 87.42%). The findings of this proof of concept are significant for denoising novel neck PPG signals, and demonstrate, for the first time, that it is possible to promptly detect apnea events from neck PPG signals in an instantaneous manner. This could make a big impact in crucial real-time applications, like devices to prevent sudden-unexpected-death-in-epilepsy (SUDEP).

Funder

European Research Council

”la Caixa” Foundation

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Biomedical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review of infant apnea monitor design;Journal of Clinical Sciences;2024-04

2. A comparative study in class imbalance mitigation when working with physiological signals;Frontiers in Digital Health;2024-03-26

3. Quantifying the Suitability of Biosignals Acquired During Surgery for Multimodal Analysis;IEEE Open Journal of Engineering in Medicine and Biology;2024

4. Contact methods for registering respiratory rate: opportunities and perspectives;Bulletin Physiology and Pathology of Respiration;2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3