Abstract
AbstractCardiac catheter ablation requires an adequate contact between myocardium and catheter tip. Our aim was to quantify the relationship between the contact force (CF) and the resulting mechanical deformation induced by the catheter tip using an ex vivo model and computational modeling. The catheter tip was inserted perpendicularly into porcine heart samples. CF values ranged from 10 to 80 g. The computer model was built to simulate the same experimental conditions, and it considered a 3-parameter Mooney-Rivlin model based on hyper-elastic material. We found a strong correlation between the CF and insertion depth (ID) (R2 = 0.96, P < 0.001), from 0.7 ± 0.3 mm at 10 g to 6.9 ± 0.1 mm at 80 g. Since the surface deformation was asymmetrical, two transversal diameters (minor and major) were identified. Both diameters were strongly correlated with CF (R2 ≥ 0.95), from 4.0 ± 0.4 mm at 20 g to 10.3 ± 0.0 mm at 80 g (minor), and from 6.4 ± 0.7 mm at 20 g to 16.7 ± 0.1 mm at 80 g (major). An optimal fit between computer and experimental results was achieved, with a prediction error of 0.74 and 0.86 mm for insertion depth and mean surface diameter, respectively.
Graphical Abstract
Funder
Ministerio de Ciencia e Innovación
Shibaura Institute of Technology
Japan Student Services Organization
Publisher
Springer Science and Business Media LLC