Abstract
Abstract
The common black box nature of machine learning models is an obstacle to their application in health care context. Their widespread application is limited by a significant “lack of trust.” So, the main goal of this work is the development of an evaluation approach that can assess, simultaneously, trust and performance. Trust assessment is based on (i) model robustness (stability assessment), (ii) confidence (95% CI of geometric mean), and (iii) interpretability (comparison of respective features ranking with clinical evidence). Performance is assessed through geometric mean. For validation, in patients’ stratification in cardiovascular risk assessment, a Portuguese dataset (N=1544) was applied. Five different models were compared: (i) GRACE score, the most common risk assessment tool in Portugal for patients with acute coronary syndrome; (ii) logistic regression; (iii) Naïve Bayes; (iv) decision trees; and (v) rule-based approach, previously developed by this team. The obtained results confirm that the simultaneous assessment of trust and performance can be successfully implemented. The rule-based approach seems to have potential for clinical application. It provides a high level of trust in the respective operation while outperformed the GRACE model’s performance, enhancing the required physicians’ acceptance. This may increase the possibility to effectively aid the clinical decision.
Graphical abstract
Funder
Instituto Politécnico de Coimbra
Publisher
Springer Science and Business Media LLC