Medical data set classification using a new feature selection algorithm combined with twin-bounded support vector machine
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Biomedical Engineering
Link
http://link.springer.com/content/pdf/10.1007/s11517-019-02100-z.pdf
Reference48 articles.
1. Subbulakshmi CV, Deepa SN (2015) Medical dataset classification: a machine learning paradigm integrating particle swarm optimization with extreme learning machine classifier. Sci World J 2015:1–12
2. Akay MF (2009) Support vector machines combined with feature selection for breast cancer diagnosis. Expert Syst Appl 36:3240–3247
3. Jaganathan P, Kuppuchamy R (2013) A threshold fuzzy entropy based feature selection for medical database classification. Comput Biol Med 43:2222–2229
4. Peng L, Chen W, Zhou W, Li F, Yang J, Zhang J (2016) An immune-inspired semi-supervised algorithm for breast cancer diagnosis. Comput Methods Prog Biomed 134:259–265
5. Zadeh Shirazi A, Seyyed Mahdavi Chabok SJ, Mohammadi Z (2018) A novel and reliable computational intelligence system for breast cancer detection. Med Biol Eng Comput 56:721–732. https://doi.org/10.1007/s11517-017-1721-z
Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Enhancing Ovarian Tumor Dataset Analysis Through Data Mining Preprocessing Techniques;IEEE Access;2024
2. Medical diagnosis decision-making framework on the internet of medical things platform using hybrid learning;Wireless Networks;2023-11-04
3. Role of transfer functions in PSO to select diagnostic attributes for chronic disease prediction: An experimental study;Journal of King Saud University - Computer and Information Sciences;2023-10
4. FaFCNN: A General Disease Classification Framework Based on Feature Fusion Neural Networks;2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC);2023-10-01
5. Wrapper-Based Feature Selection for Medical Diagnosis: The BTLBO-KNN Algorithm;IEEE Access;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3