Computerized detection and recognition of follicles in ovarian ultrasound images: a review
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Biomedical Engineering
Link
http://link.springer.com/content/pdf/10.1007/s11517-012-0956-y.pdf
Reference56 articles.
1. Adams J, Franks S, Polson DW (1985) Multifollicluar ovaries: clinical and endocrine features and response to pulsatile gonadotropin releasing hormone. Lancet II:1375–1379
2. Bian N, Eramian M, Pierson R (2006) Evaluation of texture features for analysis of ovarian follicular development. In: Larsen R, Nielsen M, Sporring J (eds) Lecture notes in computer science, vol 4,191, Springer, Berlin, pp 93–100
3. Brannstrorm M, Zickrisson U, Hagstroom H (1998) Blood flow indices as measured by color doppler ultrasonography in different regions of the human periovulatory follicle. Fertil. Steril. 69:435–442
4. Chen T, Zhang W, Good S, Zhou K, Comaniciu D (2009) Automatic ovarian follicle quantification from 3-D ultrasound data using global/local context with database guided segmentation. In: Proceedings of the 12th IEEE conference on computer vision, Kyoto, pp 795–802
5. Cigale B, Zazula D (2004) Segmentation of ovarian ultrasound images using cellular neural. Intern. J. Pattern. Recognit. Artif. Intell. 18(4):563–581
Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Performance Analysis of a Novel Hybrid Segmentation Method for Polycystic Ovarian Syndrome Monitoring;Diagnostics;2023-02-16
2. An improvised follicle polycystic ovarian detection using AKF from a sequence of given ultrasound images;Journal of Intelligent & Fuzzy Systems;2022-11-11
3. Deeply-Supervised 3D Convolutional Neural Networks for Automated Ovary and Follicle Detection from Ultrasound Volumes;Applied Sciences;2022-01-25
4. Ovarian Structures Detection using Convolutional Neural Networks;Procedia Computer Science;2022
5. An Adaptive K-Means Segmentation for Detection of Follicles in Polycystic Ovarian Syndrome in Ultrasound Image;Proceedings of International Conference on Communication and Artificial Intelligence;2021
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3