1. Vapnik V. The Nature of Statistical Learning Theory. New York: Springer, 1995
2. Müller K R, Mika S, Rätsch G, Tsuda K, Schölkopf B. An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks, 2001, 12(2): 181–201
3. Schölkopf B, Smola A, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998, 10(5): 1299–1319
4. Mika S, Rätsch G, Weston J, Schölkopf B, Müller K R. Fisher discriminant analysis with kernels. In: Proceedings of IEEE International Workshop on Neural Networks for Signal Processing IX. 1999, 41–48
5. Mika S, Rätsch G, Schölkopf B, Smola A, Weston J, Müller K R. Invariant feature extraction and classification in kernel spaces. Advances in Neural Information Processing Systems, 1999, 12: 526–532