Abstract
AbstractWe present new evidence for neotectonic activity along the Harz Boundary Fault, a Cretaceous reverse fault that represents a key structure in northern Germany. For the fault analysis, we use a multimethod approach, integrating outcrop data, luminescene dating, shear wave seismics, electrical resistivity tomography (ERT) and numerical simulations. A recent sinkhole at the SSW-ward dipping and WNW–ESE striking Harz Boundary Fault exposes a NNE-ward dipping and WNW–ESE striking planar fault surface that cuts through unconsolidated debris-flow deposits thus pointing to young Lateglacial tectonic activity. The fault shows a polyphase evolution with initial normal fault movement and a later reactivation as an oblique fault with reverse and strike-slip components. A shear wave seismic profile was acquired to analyse the geometry of the fault and show that the Harz Boundary Fault is steeply dipping and likely has branches. Partly, these branches propagate into overlying alluvial-fan deposits that are probably Pleniglacial to Lateglacial in age. The outcrop data in combination with the seismic data give evidence for a splay fault system with steep back-thrusts. One of these back-thrusts is most likely the NNE-ward dipping fault that is exposed in the sinkhole. The lateral extent of the fault was mapped with electrical resistivity tomography (ERT) profiles. The timing of fault movement was estimated based on optically stimulated luminescence dating of the faulted debris-flow deposits using both quartz and feldspar minerals. Consistent feldspar and quartz ages indicate a good bleaching of the sediment prior to deposition. The results imply fault movements post-dating ~ 15 ka. Numerical simulations of glacio isostatic adjustment (GIA)-related changes in the Coulomb failure stress regime at the Harz Boundary Fault underpin the assumption that the fault was reactivated during the Lateglacial due to stress changes induced by the decay of the Late Pleistocene (Weichselian) Fennoscandian ice sheet.
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences
Reference131 articles.
1. Al Hseinat M, Hübscher C (2017) Late Cretaceous to recent tectonic evolution of the North German Basin and the transition zone to the Baltic Shield/southwest Baltic Sea. Tectonophysics 708:28–55
2. Argus DF, Peltier W, Drummond R, Moore AW (2014) The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories. Geophys J Int 198:537–563
3. Baldschuhn R, Best G, Kockel F (1991) Inversion tectonics in the north-west German basin. Generation, accumulation, and production of Europe’s hydrocarbons. Spec Publ Eur Assoc Pet Geosci 1:149–159
4. Baldschuhn R, Binot F, Fleig S, Kockel F (1996) Geotektonischer Atlas von Nordwest-Deutschland und dem deutschen Nordsee-Sektor. Geol Jb A 153:3–95
5. Blair TC, McPherson JG (2009) Processes and forms of alluvial fans. In: Parsons AJ, Abrahams AD (eds) Geomorphology of desert environments, 2nd edn. Springer, Netherlands, pp 413–467
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献