Relationship between magnetic fabrics and deformation of the Miocene Pohorje intrusions and surrounding sediments (Eastern Alps)

Author:

Fodor László I.ORCID,Márton EmőORCID,Vrabec MarkoORCID,Koroknai Balázs,Trajanova Mirka,Vrabec Mirijam

Abstract

AbstractThe Miocene deformation history of magmatic and host metamorphic rocks and surrounding sediments was reconstructed by measuring meso- and microscale structures and anisotropy of magnetic susceptibility (AMS) data in order to constrain the structural evolution of the Pohorje pluton during the onset of lithospheric extension at the Eastern Alps–Pannonian Basin transition. Principal AMS axes, lineation and foliation are very similar to mesoscopic lineation and foliation data from the main intrusive body and from some dykes. Although contribution from syn-magmatic texture is possible, these structures were formed during the cooling of the pluton and associated subvolcanic dykes just shortly after the 18.64 Ma pluton intrusion. Dykes emplaced during progressively younger episodes reflect decreasing amount of ductile strain, while firstly mesoscopic foliation and lineation, and then the tectonic AMS signal gradually disappears. In the structurally highest N–S trending dacite dykes, the AMS fabric only reflects the magmatic flow. The Miocene sediments underwent the same, NE–SW to E–W extension as the magmatic and host metamorphic rocks as indicated by both AMS and fault-slip data. All these events occurred prior to ~ 15 Ma, i.e., during the main syn-rift extension of the Pannonian Basin and during the fastest exhumation of the Tauern and Rechnitz windows, both demonstrating considerable extension of diverse crustal segments of the Alpine nappe pile. After a counterclockwise rotation around ~ 15 Ma, the maximum stress axis changed to a SE–NW orientation, but it was only registered by brittle faulting. During this time, the overprinting of a syn-rift extensional AMS texture was not possible in the cooled or cemented magmatic, metamorphic and sedimentary rocks.

Funder

NKFIH OTKA Hungary

NKFIH OTKA

Slovenian Research Agency

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3