Revealing exhumation of the central Alps during the Early Oligocene by detrital zircon U–Pb age and fission-track double dating in the Taveyannaz Formation

Author:

Lu GangORCID,Fellin Maria GiudittaORCID,Winkler WilfriedORCID,Rahn MeinertORCID,Guillong MarcelORCID,von Quadt AlbrechtORCID,Willett Sean D.ORCID

Abstract

AbstractThe late Eocene-to-early Oligocene Taveyannaz Formation is a turbidite series deposited in the Northern Alpine Foreland Basin (close to the Alpine orogenic front). Double dating of zircons with the fission-track and the U–Pb methods is applied on samples from the Taveyannaz Formation to reconstruct the exhumation history of the Central-Western Alps and to understand the syn-collisional magmatism along the Periadriatic lineament. Three samples from this unit show similar detrital zircon fission-track age populations that center at: 33–40 Ma (20%); 69–92 Ma (30–40%); and 138–239 Ma (40–50%). The youngest population contains both syn-volcanic and basement grains. Combined with zircon U–Pb data, it suggests that the basement rocks of Apulian-affinity nappes (Margna Sesia, Austroalpine) were the major sources of detritus, together with the Ivrea Zone and recycled Prealpine flysch, that contributed debris to the Northern Alpine Foreland Basin. Furthermore, the rocks of the Sesia–Lanzo Zone or of equivalent units exposed at that time presumably provided the youngest basement zircon fission-track ages to the basin. The Biella volcanic suite was the source of volcanogenic zircons. Oligocene sediment pathways from source to sink crossed further crystalline basement units and sedimentary covers before entering the basin from the southeast. The lag times of the youngest basement age populations (volcanic zircons excluded) are about 11 Myr. This constrains average moderate-to-high exhumation rate of 0.5–0.6 km/Myr in the pro-side of the orogenic wedge of the Central Alps during the late Eocene to early Oligocene.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3