Metabasic rocks from the Variscan Schwarzwald (SW Germany): metamorphic evolution and igneous protoliths

Author:

Altherr Rainer,Hepp Stefan,Klein Hans,Hanel Michael

Abstract

AbstractIn the Variscan Schwarzwald metabasic rocks form small bodies included within anatectic plagioclase-biotite gneisses. Many metabasites first underwent an eclogite-facies metamorphism at about 2.0 GPa and 670–700 °C, resulting in the assemblage garnet + omphacite + rutile + quartz ± epidote ± amphibole ± kyanite. Since these eclogites are nearly free of an OH-bearing phase, they underwent almost complete dehydration during subduction, suggesting formation along an average to warm top-of-the-slab geotherm of 10–13 °C/km. The age of the Variscan high-P/high-T metamorphism is > 333 Ma. After partial exhumation from ~ 65 to ~ 15 km depth, the eclogites were overprinted under increasing activity of H2O by a number of retrograde reactions. The degree of this overprint under amphibolite-facies conditions (0.4–0.5 GPa/675–690 °C) was very different. Up to now, only retrograde eclogites have been found, but some samples still contain omphacite. Kyanite is at least partially transformed to aggregates of plagioclase + spinel ± corundum ± sapphirine. On the other hand, there are amphibolites that are extensively recrystallized and show the assemblage amphibole + plagioclase + ilmenite/titanite ± biotite ± quartz ± sulphides. The last relic phase that can be found in such otherwise completely recrystallized amphibolites is rutile. After the amphibolite-facies metamorphism at ~ 333 Ma, the metabasites underwent a number of low-temperature transformations, such as sericitization of plagioclase, chloritization of amphibole, and formation of prehnite. The intimate association of metabasite bodies with gneisses of dominantly meta-greywacke compositions suggests derivation from an active plate margin. This view is corroborated by bulk-rock geochemical data. Excluding elements that were mobile during metamorphism (Cs, Rb, Ba, K, Pb, Sr, U), the concentrations of the remaining elements in most of the metabasites are compatible with a derivation from island-arc tholeiites, back-arc basin basalts or calc-alkaline basalts. Only some samples have MORB precursor rocks.

Funder

Ruprecht-Karls-Universität Heidelberg

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3