Latest Pliensbachian to Early Toarcian depositional environment and organo-facies evolution in the North-German Basin (Hondelage Section)

Author:

Marten Tim,Ruebsam Wolfgang,Mutterlose Jörg,Wiesenberg Guido L. B.,Schwark LorenzORCID

Abstract

AbstractThe Pliensbachian/Toarcian boundary interval represents a transition from a coldhouse into a hothouse climate state, involving the demise of a land-based cryosphere, initiating a third-order global sea-level rise. Within the intensely studied Northwest Tethyan shelf region, the South-German Basin has been investigated in more detail than the North-German Basin (NGB). We here provide a palaeoenvironmental reconstruction of the Pliensbachian/Toarcian transition from the Hondelage fossil excavation site located in the NGB employing organic, isotope, and major/trace element proxies. Here, the late Pliensbachian was characterized by cold climate, low sea level, and a slow hydrological cycle, causing minor terrigenous sediment and nutrient fluxes to the basin, instigating low marine productivity. Shallow, well-mixed shelf waters of normal salinity favored aerobic degradation of planktonic biomass, preventing sedimentary accumulation of organic matter. These conditions changed in the earliest Toarcian, where increased temperatures led to sea-level rise via meltdown of land-based ice and accelerated the hydrological cycle, causing salinity stratification. Enhanced riverine sediment and nutrient supply from nearby landmasses promoted marine primary productivity, which caused anoxic conditions in bottom and pore waters favoring enhanced preservation and accumulation of organic matter. A short-lived sea-level fall at the Lower Elegans Bed coincided with lowered productivity and enhanced carbonate precipitation, due to reduced runoff and recovery of the carbonate factory. Increased redox-sensitive trace element concentrations above the Lower Elegans Bed suggest a renewed inflow of low-salinity arctic water masses via the Viking Corridor and potentially increased freshwater input, promoting water column stratification, enhanced planktonic productivity, and re-establishment of bottom water anoxia/euxinia. Graphical abstract

Funder

Deutsche Forschungsgemeinschaft

Christian-Albrechts-Universität zu Kiel

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3