New insights into the structural development and shortening of the southern Jasmund Glacitectonic Complex (Rügen, Germany) based on balanced cross sections

Author:

Gehrmann AnnaORCID,Pedersen Stig A. Schack,Meschede Martin

Abstract

AbstractLate Pleistocene glacitectonism at the southern Scandinavian Ice Sheet margin caused folding and thrusting of Upper Cretaceous chalk layers and Pleistocene glacial deposits in parts of the southwestern Baltic Sea area in Europe. Beside Møns Klint (SE Denmark), the Jasmund Glacitectonic Complex (JGC) on Rügen Island (NE Germany) is a similar striking example of glacitectonic deformation creating large composite ridges. In spite of a long research history and new results from modern datasets, the structural development of the JGC is still poorly understood, especially the detailed evolution of the southern JGC and its relationship to the northern JGC remain enigmatic. In this contribution, we demonstrate how the understanding of the JGC benefits from the application of established structural geological methods comprehending the formation of fold-and-thrust belts. The methods include cross-section balancing of the eastern coast (southern JGC) and quantification of the amount of folding and faulting. The proposed geometric model shows the current fold-and-thrust stack of glacially deformed sedimentary strata ca. 5720 m in length evolved by shortening from the original length (11,230 m) by 5510 m (49.1%). We present a spatial and temporal development of fault-related folding with a transition from detachment folds through fault-propagation folds to fault-bend folds. Together with morphological information from a digital elevation model, the thrust faults mapped in the cliff section are mainly inclined towards the S to SW and imply that a local glacier push occurred from the south. These results highlight the complexity and individual architecture of the JGC when compared to other Pleistocene and modern glacitectonic complexes. Resolving its structural development provides new insight into the deformation history and shortening of this spectacular glacitectonic complex lying in the southwestern Baltic Sea region.

Funder

Universität Greifswald

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3