Emplacement of shocked basement clasts during crater excavation in the Ries impact structure

Author:

Dellefant FabianORCID,Seybold Lina,Trepmann Claudia A.,Gilder Stuart A.,Sleptsova Iuliia V.,Hölzl Stefan,Kaliwoda Melanie

Abstract

AbstractIn the Aumühle quarry of the Ries impact structure, moderately shocked clasts from the Variscan basement occur sandwiched between overlying suevite and components derived from the Mesozoic sedimentary cover of the underlying Bunte Breccia without distinct shock effects. We analyzed the clasts by optical microscopy, scanning electron microscopy (SEM/EDS/EBSD), and Raman spectroscopy to unravel their emplacement relation to the overlying suevite and the sediment-rock clasts of the Bunte Breccia. Clasts sizes range up to few decimeters and are embedded in a fine-grained lithic matrix; no impact-melt fragments are observed. Amphibolite clasts contain maskelynite with few lamellar remnants of feldspar, indicating shock pressures of 28–34 GPa. Amphiboles have cleavage fractures and ($$\overline{1}$$ 1 ¯ 01) mechanical twins suggesting differential stresses > 400 MPa. Felsic gneiss components have optically isotropic SiO2 indicative of shock pressures ≈35 GPa. Metagranite cataclasite clasts contain shocked calcite aggregates and quartz with a high density of fine rhombohedral planar deformation features indicating shock pressures ≈20 GPa. The moderately shocked basement clasts originate from deeper levels of the transient cavity and lower radial distance to the center of the structure compared to the sediment-rock clasts. Both were ballistically ejected during crater excavation. In accordance with palaeo- and rock magnetic data, they were mixed during turbulent deposition at the top of the Bunte Breccia before the emplacement of suevite. The high amount of basement clasts below suevite and on top of the underlying Bunte Breccia is consistent with the commonly reported inverse stratigraphy in the Ries impact structure. Graphical Abstract

Funder

Deutsche Forschungsgemeinschaft

Ludwig-Maximilians-Universität München

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3