Abstract
AbstractIn the Aumühle quarry of the Ries impact structure, moderately shocked clasts from the Variscan basement occur sandwiched between overlying suevite and components derived from the Mesozoic sedimentary cover of the underlying Bunte Breccia without distinct shock effects. We analyzed the clasts by optical microscopy, scanning electron microscopy (SEM/EDS/EBSD), and Raman spectroscopy to unravel their emplacement relation to the overlying suevite and the sediment-rock clasts of the Bunte Breccia. Clasts sizes range up to few decimeters and are embedded in a fine-grained lithic matrix; no impact-melt fragments are observed. Amphibolite clasts contain maskelynite with few lamellar remnants of feldspar, indicating shock pressures of 28–34 GPa. Amphiboles have cleavage fractures and ($$\overline{1}$$
1
¯
01) mechanical twins suggesting differential stresses > 400 MPa. Felsic gneiss components have optically isotropic SiO2 indicative of shock pressures ≈35 GPa. Metagranite cataclasite clasts contain shocked calcite aggregates and quartz with a high density of fine rhombohedral planar deformation features indicating shock pressures ≈20 GPa. The moderately shocked basement clasts originate from deeper levels of the transient cavity and lower radial distance to the center of the structure compared to the sediment-rock clasts. Both were ballistically ejected during crater excavation. In accordance with palaeo- and rock magnetic data, they were mixed during turbulent deposition at the top of the Bunte Breccia before the emplacement of suevite. The high amount of basement clasts below suevite and on top of the underlying Bunte Breccia is consistent with the commonly reported inverse stratigraphy in the Ries impact structure.
Graphical Abstract
Funder
Deutsche Forschungsgemeinschaft
Ludwig-Maximilians-Universität München
Publisher
Springer Science and Business Media LLC
Reference82 articles.
1. Abadian M (1972) Petrographie, Stoßwellenmetamorphose und Entstehung polymikter kristalliner Breccien im Nördlinger Ries. Contrib Mineral Petrol 35:245–262
2. Abadian M, von Engelhardt W, Schneider W (1973) Spaltenfüllungen in allochthonen Schollen des Nördlinger Ries. Geologica Bavarica 67:229–237
3. Arp G, Reimer A, Simon K, Sturm S, Wilk J, Kruppa C, Hecht L, Hansen BT, Pohl J, Reimold WU, Kenkmann T, Jung D (2019) The Erbisberg drilling 2011: Implications for the structure and postimpact evolution of the inner ring of the Ries impact crater. Meteorit Planet Sci 54:2448–2482. https://doi.org/10.1111/maps.13293
4. Artemieva NA, Wünnemann K, Krien F, Reimold WU, Stöffler D (2013) Ries crater and suevite revisited-Observations and modeling Part II: Modeling. Meteorit Planet Sci 48:590–627. https://doi.org/10.1111/maps.12085
5. Bader K, Schmidt-Kaler H (1977) Der Verlauf einer präriesichen Erosionsrinne im östlichen Riesvorland zwischen Treuchtlingen und Donauwörth. In: Schmidt-Kaler H (ed) Geologica Bavarica 75. Bayerisches Geologisches Landesamt, München, pp 401–410