Ocean resurge-induced impact melt dynamics on the peak-ring of the Chicxulub impact structure, Mexico
-
Published:2021-03-18
Issue:7
Volume:110
Page:2619-2636
-
ISSN:1437-3254
-
Container-title:International Journal of Earth Sciences
-
language:en
-
Short-container-title:Int J Earth Sci (Geol Rundsch)
Author:
Schulte Felix M., Wittmann Axel, Jung Stefan, Morgan Joanna V., Gulick Sean P. S., Kring David A., Grieve Richard A. F., Osinski Gordon R., Riller UlrichORCID, Gulick S. P. S., Morgan J. V., Bralower T. J., Chenot E., Christeson G. L., Claeys P., Cockell C. S., Coolen M. J. L., Ferrière L., Gebhardt C., Goto K., Green S., Jones H., Kring D. A., LeBer E., Lofi J., Lowery C. M., Ocampo-Torres R., Perez-Cruz L., Pickersgill A. E., Poelchau M. H., Rae A. S. P., Rasmussen C., Rebolledo-Vieyra M., Riller U., Sato H., Schmitt D., Smit J., Tikoo S. M., Tomioka N., Urrutia-Fucugauchi J., Whalen M. T., Wittmann A., Xiao L., Yamaguchi K. E.,
Abstract
AbstractCore from Hole M0077 from IODP/ICDP Expedition 364 provides unprecedented evidence for the physical processes in effect during the interaction of impact melt with rock-debris-laden seawater, following a large meteorite impact into waters of the Yucatán shelf. Evidence for this interaction is based on petrographic, microstructural and chemical examination of the 46.37-m-thick impact melt rock sequence, which overlies shocked granitoid target rock of the peak ring of the Chicxulub impact structure. The melt rock sequence consists of two visually distinct phases, one is black and the other is green in colour. The black phase is aphanitic and trachyandesitic in composition and similar to melt rock from other sites within the impact structure. The green phase consists chiefly of clay minerals and sparitic calcite, which likely formed from a solidified water–rock debris mixture under hydrothermal conditions. We suggest that the layering and internal structure of the melt rock sequence resulted from a single process, i.e., violent contact of initially superheated silicate impact melt with the ocean resurge-induced water–rock mixture overriding the impact melt. Differences in density, temperature, viscosity, and velocity of this mixture and impact melt triggered Kelvin–Helmholtz and Rayleigh–Taylor instabilities at their phase boundary. As a consequence, shearing at the boundary perturbed and, thus, mingled both immiscible phases, and was accompanied by phreatomagmatic processes. These processes led to the brecciation at the top of the impact melt rock sequence. Quenching of this breccia by the seawater prevented reworking of the solidified breccia layers upon subsequent deposition of suevite. Solid-state deformation, notably in the uppermost brecciated impact melt rock layers, attests to long-term gravitational settling of the peak ring.
Funder
Deutsche Forschungsgemeinschaft National Science Foundation Natural Science Foundation Universität Hamburg
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences
Reference85 articles.
1. Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the cretaceous-tertiary extinction. Science 208:1095–1108. https://doi.org/10.1126/science.208.4448.1095 2. Anders D, Osinski GR, Grieve RAF, Brillinger DTM (2015) The basal Onaping intrusion in the north range: roof rocks of the Sudbury igneous complex. Meteoritics Planet Sci 50:1577–1594. https://doi.org/10.1111/maps.12497 3. Barton PJ, Grieve RAF, Morgan JV, Surendra AT, Vermeesch PM, Christeson GL, Gulick SPS, Warner MR (2010). Seismic images of Chicxulub impact melt sheet and comparison with the Sudbury structure. In: Reimold WU, Gibson RL (eds) Large meteorite impacts and planetary evolution IV, Geol Soc Am Spec Paper 465, pp 103–113. https://doi.org/10.1130/2010.2465(07) 4. Bowen NL (1928) The evolution of igneous rocks. In: Yoder HS Jr (ed) The evolution of the igneous rocks-fiftieth anniversary perspective. Princeton 5. Christeson GL, Gulick SPS, Morgan JV, Gebhardt C, Kring DA, Le Ber E, Lofi J, Nixon C, Poelchau M, Rae ASP, Rebolledo-Vieyra M, Riller U, Schmitt DR, Wittmann A, Bralower TJ, Chenot E, Claeys P, Cockell CS, Coolen MJL, Ferrière L, Green S, Goto K, Jones H, Lowery CM, Mellet C, Ocampo-Torres R, Perez-Cruz L, Pickersgill AE, Rasmussen C, Sato H, Smit J, Tikoo SM, Tomioka N, Urrutia-Fucugauchi J, Wahlen MT, Xiao L, Yamaguchi KE (2018) Extraordinary rocks from the peak ring of the Chicxulub impact crater: P-wave velocity, density, and porosity measurements from IODP/ICDP Expedition 364. Earth Planet Sci Lett 495:1–11. https://doi.org/10.1016/j.epsl.2018.05.013
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|