Compaction control on diagenesis and reservoir quality development in red bed sandstones: a case study of Permian Rotliegend sandstones

Author:

Monsees Alexander C.ORCID,Busch Benjamin,Hilgers Christoph

Abstract

AbstractAuthigenic minerals formed during diagenesis in conjunction with compaction by burial have long been known to lead to porosity-loss of sandstones, and a subsequent deterioration in reservoir quality. The diagenetic impact on reservoir quality and permeability heterogeneity measured horizontal and vertical to bedding was characterized in three fluvio-eolian Lower Permian Rotliegend outcrops from the Flechtingen High, the northern Hesse Basin (both Germany) and the Vale of Eden (UK) using point-counting, polarized light-microscopy, helium pycnometry and permeability measurements. Results show significant porosity (10 to 35%) and permeability (0.01 to 10,000 mD) ranges largely independent of depositional environment. The major control on reservoir quality in Cornberg Sandstones are dolomite and siderite cementation in conjunction with illitization and illite and kaolinite cementation, leading together with quartz cementation to a mostly cemented IGV and poorest reservoir quality (avg. horizontal permeability: 0.96 mD). Flechtingen Sandstones are most intensely compacted due to the lack of significant early diagenetic cement phases and continuous illitic grain-to-grain coatings, which inhibited intense quartz cementation but enhanced chemical compaction at quartz grain contacts, resulting in intermediate reservoir quality (avg. horizontal permeability: 34.9 mD). Penrith Sandstones lack significant authigenic phases besides quartz due to carbonate dissolution during uplift. They show the least amount of detrital feldspars and clay minerals, leading to no major reservoir quality reduction by burial diagenetic clay mineral alterations, resulting in the highest reservoir quality (avg. horizontal permeability: 5900 mD). Additional results highlight higher horizontal to vertical permeability ratios kh/kv in less homogeneous sandstones of < 10 mD of 10, and in more homogenous, higher permeable sandstones > 1000 mD of 1. Although detrital and authigenic sample compositions vary throughout the studied areas, the general effect of grain coatings coverages on syntaxial cement inhibition and chemical compaction can be delineated. This study increases the understanding of porosity reduction in sandstones, as it confirms the necessity to differentiate between the illitic grain-to-grain coatings and illitic grain-to-IGV coatings. As a result, the enhancing effect of illite on chemical compaction on quartz grain-grain boundaries can be better constrained, as well as the effect of grain coatings on quartz cementation. This is relevant for reservoir quality and risk assessment in hydrocarbon and geothermal plays as well as in storage.

Funder

Bundesministerium für Bildung und Forschung

Karlsruher Institut für Technologie (KIT)

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3