Kinematic partitioning in the Southern Andes (39° S–46° S) inferred from lineament analysis and reassessment of exhumation rates

Author:

Göllner Paul LeonORCID,Eisermann Jan OliverORCID,Balbis Catalina,Petrinovic Ivan A.,Riller UlrichORCID

Abstract

AbstractThe Southern Andes are often viewed as a classic example for kinematic partitioning of oblique plate convergence into components of continental margin-parallel strike-slip and transverse shortening. In this regard, the Liquiñe-Ofqui Fault Zone, one of Earth’s most prominent intra-arc deformation zones, is believed to be the most important crustal discontinuity in the Southern Andes taking up margin-parallel dextral strike-slip. Recent structural studies, however, are at odds with this simple concept of kinematic partitioning, due to the presence of margin-oblique and a number of other margin-parallel intra-arc deformation zones. However, knowledge on the extent of such zones in the Southern Andes is still limited. Here, we document traces of prominent structural discontinuities (lineaments) from the Southern Andes between 39° S and 46° S. In combination with compiled low-temperature thermochronology data and interpolation of respective exhumation rates, we revisit the issue of kinematic partitioning in the Southern Andes. Exhumation rates are maximal in the central parts of the orogen and discontinuity traces, trending predominantly N–S, WNW–ESE and NE–SW, are distributed across the entire width of the orogen. Notably, discontinuities coincide spatially with large gradients in Neogene exhumation rates and separate crustal domains characterized by uniform exhumation. Collectively, these relationships point to significant components of vertical displacement on these discontinuities, in addition to horizontal displacements known from published structural studies. Our results agree with previously documented Neogene shortening in the Southern Andes and indicate orogen-scale transpression with maximal vertical extrusion of rocks in the center of the transpression zone. The lineament and thermochronology data call into question the traditional view of kinematic partitioning in the Southern Andes, in which deformation is focused on the Liquiñe-Ofqui Fault Zone.

Funder

Deutsche Forschungsgemeinschaft

Universität Hamburg

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3