Binding of [125I]iodocyanopindolol by rat Harderian gland crude membranes: Kinetic characteristics and day—night variations

Author:

Harmouch A.1,Osuna C.1,Rafii-El-Idrissi M.1,Calvo J. R.1,Guerrero J. M.1

Affiliation:

1. Department of Medical Biochemistry and Molecular Biology, The University of Seville School of Medicine and Virgen Macarena Hospital, Avda Sanchez Pizjuan 4, 41009-Seville, Spain.

Abstract

The Harderian glands are innervated by sympathetic fibers originating in the superior cervical ganglia. The aim of this study is to characterize the β-adrenergic receptors in the rat Harderian gland. The characteristics of β-adrenergic receptors were determined in crude membrane preparations from rat Harderian gland, using [125I]iodocyanopindolol ([125I]CYP) as radioligand. The binding of the ligand to the receptor is rapid, reversible, saturable, specific and dependent on time, temperature and membrane concentration. At 30 °C, stoichiometric data suggest the presence of one binding site with a Kd value of 0.29 nM and Bmax of 32 pmol/L. The interaction shows a high degree of specificity for β-adrenergic agonists and blockers, as suggested by competitive displacement experiments with isoproterenol (IC50=19.1 nM), propranolol (IC50=28.1 nM), and norepinephrine (IC50=96.3 nM). Clonidine, yohimbine, methoxamine, and prazosin are ineffective at concentrations up to 1 μM. In the other hand, binding of [125I]CYP by Harderian gland membranes exhibits day—night variations. Binding values are low during the daytime and increase progressively late in the evening to reach a maximum at 2200 h (2 h after the onset of dark period), but decreased to the end of the dark period (0600 h). In conclusion, the results presented in this paper show the functional and pharmacological characterization of β-adrenergic receptors in the rat Harderian gland. This neurotransmitter may play a physiological role at this level regulating, at least, processes such as a thyroid hormone metabolism.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3