Author:
Zhao Boying,Kong Lingkai,He Wei,Zhou Guohui,Zhu Hailong
Funder
the Postdoctoral Science Foundation of China
the Teaching reform project of higher education in Heilongjiang Province
the Natural Science Foundation of Heilongjiang Province of China
the Social Science Foundation of Heilongjiang Province of China
the Foreign Expert Projects in Heilongjiang
the Graduate innovation project of Harbin Normal University
Publisher
Springer Science and Business Media LLC
Reference29 articles.
1. Aldrini, J., Chihi, I., Sidhom, L.: Fault diagnosis and self-healing for smart manufacturing: a review. J. Intell. Manuf. (2023). https://doi.org/10.1007/s10845-023-02165-6
2. Chu, K., Liu, R., Duan, G.: A gray correlation based Bayesian network model for fault source diagnosis of multistage process—small sample manufacturing system. Adv. Eng. Inform. 56, 101918 (2023)
3. Madhusudana, C.K., Kumar, H., Narendranath, S.: Fault diagnosis of face milling tool using decision tree and sound signal. Mater. Today: Proc. 5(5), 12035–12044 (2018)
4. Zhang, Y., Mu, L., Shen, G., et al.: Fault diagnosis strategy of CNC machine tools based on cascading failure. J. Intell. Manuf. 30, 2193–2202 (2019)
5. Shen, S., Lu, H., Sadoughi, M., et al.: A physics-informed deep learning approach for bearing fault diagnosis. Eng. Appl. Artif. Intell. 103, 104295 (2021)