Procrustes-based distances for exploring between-matrices similarity

Author:

Andreella AngelaORCID,De Santis Riccardo,Vesely Anna,Finos Livio

Abstract

AbstractThe statistical shape analysis called Procrustes analysis minimizes the Frobenius distance between matrices by similarity transformations. The method returns a set of optimal orthogonal matrices, which project each matrix into a common space. This manuscript presents two types of distances derived from Procrustes analysis for exploring between-matrices similarity. The first one focuses on the residuals from the Procrustes analysis, i.e., the residual-based distance metric. In contrast, the second one exploits the fitted orthogonal matrices, i.e., the rotational-based distance metric. Thanks to these distances, similarity-based techniques such as the multidimensional scaling method can be applied to visualize and explore patterns and similarities among observations. The proposed distances result in being helpful in functional magnetic resonance imaging (fMRI) data analysis. The brain activation measured over space and time can be represented by a matrix. The proposed distances applied to a sample of subjects—i.e., matrices—revealed groups of individuals sharing patterns of neural brain activation. Finally, the proposed method is useful in several contexts when the aim is to analyze the similarity between high-dimensional matrices affected by functional misalignment.

Funder

Universitá Ca’Foscari Venezia

Universitá degli Studi di Padova

Università degli Studi di Padova

Publisher

Springer Science and Business Media LLC

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Reference40 articles.

1. Andrade JM, Gómez-Carracedo MP, Krzanowski W, Kubista M (2004) Procrustes rotation in analytical chemistry, a tutorial. Chemom Intell Lab Syst 72(2):123–132

2. Andreella A, De Santis R, Finos L (2022a) Valid inference for group analysis of functionally aligned fMRI images. Book of Short Papers SIS 2022, Pearson, pp. 1987–1993. ISBN:9788891932310

3. Andreella A, Finos L (2022) Procrustes analysis for high-dimensional data. Psychometrika 87(4):1422–1438

4. Andreella A, Finos L, Garofalo S (2022b) Functional alignment enhances electroencephalography (EEG) data’s group analysis. Book of Abstract. $$30^\circ$$ Congresso dell’Associazione Italiana di Psicologia, ISBN:9788869383168

5. Andreella A, Finos L, Lindquist MA (2023) Enhanced hyperalignment via spatial prior information. Hum Brain Mapp 44(4):1725–1740

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3