Generalized residuals and outlier detection for ordinal data with challenging data structures

Author:

Iannario MariaORCID,Monti Anna Clara

Abstract

AbstractMotivated by the analysis of rating data concerning perceived health status, a crucial variable in biomedical, economic and life insurance models, the paper deals with diagnostic procedures for identifying anomalous and/or influential observations in ordinal response models with challenging data structures. Deviations due to some respondents’ atypical behavior, outlying covariates and gross errors may affect the reliability of likelihood based inference, especially when non robust link functions are adopted. The present paper investigates and exploits the properties of the generalized residuals. They appear in the estimating equations of the regression coefficients and hold the remarkable characteristic of interacting with the covariates in the same fashion as the linear regression residuals. Identification of statistical units incoherent with the model can be achieved by the analysis of the residuals produced by maximum likelihood or robust M-estimation, while the inspection of the weights generated by M-estimation allows to identify influential data. Simple guidelines are proposed to this end, which disclose information on the data structure. The purpose is twofold: recognizing statistical units that deserve specific attention for their peculiar features, and being aware of the sensitivity of the fitted model to small changes in the sample. In the analysis of the self-perceived health status, extreme design points associated with incoherent responses produce highly influential observations. The diagnostic procedures identify the outliers and assess their influence.

Funder

Università degli Studi di Napoli Federico II

Publisher

Springer Science and Business Media LLC

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3