Statistically validated coeherence and intensity in temporal networks of information flows

Author:

Pagnottoni PaoloORCID,Spelta Alessandro

Abstract

AbstractWe propose a method for characterizing the local structure of weighted multivariate time series networks. We draw intensity and coherence of network motifs, i.e. statistically recurrent subgraphs, to characterize the system behavior via higher-order structures derived upon effective transfer entropy networks. The latter consists of a model-free methodology enabling to correct for small sample biases affecting Shannon transfer entropy, other than conducting inference on the estimated directional time series information flows. We demonstrate the usefulness of our proposed method with an application to a set of global commodity prices. Our main result shows that, despite simple triadic structures are the most intense, coherent and statistically recurrent over time, their intensity suddenly decreases after the Global Financial Crisis, in favor of most complex triadic structures, while all types of subgraphs tend to become more coherent thereafter.

Funder

European Commission

Publisher

Springer Science and Business Media LLC

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hedging global currency risk: A dynamic machine learning approach;Physica A: Statistical Mechanics and its Applications;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3