Author:
Frumento Paolo,Salvati Nicola
Abstract
AbstractApplying quantile regression to count data presents logical and practical complications which are usually solved by artificially smoothing the discrete response variable through jittering. In this paper, we present an alternative approach in which the quantile regression coefficients are modeled by means of (flexible) parametric functions. The proposed method avoids jittering and presents numerous advantages over standard quantile regression in terms of computation, smoothness, efficiency, and ease of interpretation. Estimation is carried out by minimizing a “simultaneous” version of the loss function of ordinary quantile regression. Simulation results show that the described estimators are similar to those obtained with jittering, but are often preferable in terms of bias and efficiency. To exemplify our approach and provide guidelines for model building, we analyze data from the US National Medical Expenditure Survey. All the necessary software is implemented in the existing R package .
Publisher
Springer Science and Business Media LLC
Subject
Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献